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Procedures are developed to facilitate the analysis of electron diffraction in-
tensities scattered by liquid clusters, with the ultimate aims of deriving suitable
potential functions for intermolecular interactions and of testing current theories
of liquids. Treated are the apportionment of electron diffraction intensities from
clusters into intermolecular, molecular and atomic contributions, and the effects
of truncation of experimental data and of finite sample size in computer simul-
ations that interfere with direct comparisons between experiment and theory.

Dedicated to Professor Otto Bastiansen on his 70th birthday.

In several respects the study of molecular clusters
(especially liquid clusters) by electron diffraction
is currently at a stage resembling that of the study
of gas molecules by electron diffraction when
Otto Bastiansen entered the field."* A number
of investigators had already obtained useful
structural information, and the fundamental prin-
ciples of scattering theory had already been for-
mally established. Yet much remained to be opti-
mized in experimental procedures and in practi-
cal analyses of diffracted intensity before the full
power in the method could be brought to bear. It
is widely appreciated that Otto Bastiansen played
a giant role in directing the development of the
electron diffraction method and bringing it to
fruition.’

From the standpoint of scattering theory there
is no essential difference in interpretation of the
diffraction of a beam of electrons by an aggregate
of atoms whether the atoms are organized into a
molecule or whether they are distributed in a
cluster. To the investigator, there is an enormous

*See, for example, Ref. 2.

*It is also of interest that Bastiansen’s early diffraction
research (Ref. 3) was directed toward the study of lig-
uids, the principal object of the present series of pa-
pers.
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difference—complexity. With liquid clusters the
precise coordinates of each atom are no longer
the point of the problem as they were in studies
of molecules. What can be learned, and how it
can be learned are the themes of this series of
papers.

Paper 1* dealt with the construction of inter-
molecular interaction functions to be incorpor-
ated into simulations of cluster structure. The
aim of the present paper is to describe the devel-
opment of suitable procedures for comparing re-
sults of electron diffraction studies of large liquid
clusters with results of Monte Carlo simulations.
As pointed out in Paper 1 of this series,* it is not
possible to extract all the information about clus-
ters that is latent within their diffraction patterns
without recourse to theoretical modeling based
on statistical thermodynamics. Neither it is pos-
sible to carry out modeling adequate for the pur-
pose based upon today’s knowledge of molecular
interactions. It is entirely feasible, however, to
refine experimental and theoretical analyses to-
gether in such a way that each benefits from the
other. Nevertheless, there arise problems associ-
ated with the incompleteness in the experimental
data and with limitations in the size of systems
treated in Monte Carlo simulations. These prob-
lems would remain even if it were assumed that



the laws of molecular interactions are fully estab-
lished and that the diffraction intensities are free
of detectable error.

In the following analyses we shall address some
of the more important problems without attempt-
ing to account for all potential sources of trouble.
For example, it will be assumed that the clusters
are sufficiently large that their pair correlation
functions correspond to those of the bulk — even
though a not inappreciable fraction of the mole-
cules are in the surface layer. First will be consid-
ered effects of incompleteness in range of scatter-
ing angle in diffraction patterns and in range of
pair correlation functions in Monte Carlo simul-
ations.

Effects of truncation

A. Available range of diffraction data. Before
analyzing problems associated with the finite
range of data available from experiment and the-
ory it may be helpful to consider some general
aspects of resolving power. Irrespective of
whether the internal structure of an object is
determined by microscopy, holography, or dif-
fraction, the principles are substantially the
same. To resolve fine detail a combination of
small wavelength (A) and large numerical aper-
ture (sinf,, in vacuo) is needed. According to the
usual definition of resolving power, the smallest
separation, Ar, that can be resolved is’

Ar = 0.6 Msin9,, (1)

where 0, is the angular displacement from the
optic axis of the outermost rays diverging from
the object and entering the objective lens (or
registering upon the hologram or diffraction pat-
tern). In diffraction theory, intensities are cus-
tomarily expressed as a function of the natural
scattering variable s whose magnitude is giv-
en by:

s = (4m/A) sin6/2. )

The limit of resolution in diffraction experiments,
then, is

Ar = Als,,., 3)

according to which atomic separations are readily
resolved if s,,, is of the order of 10 A~', a com-
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mon value in cluster studies (cf. s,,,, = 30 to 60
A-! in gas-phase determinations of molecular
structure). Eqn. (3) also shows, however, that
scattering at small angles inside, say, s = 0.8 A~!
is not sensitive to fine detail in the distribution of
scattering sites. We shall make use of this fact in a
later section.

The small-angle insensitivity to structure is for-
tunate because intensities of the elastically scat-
tered electrons needed for structure analyses are
difficult to measure with high precision at small
scattering angles. Below s = 1 A1, scattered
intensity begins to be dominated by inelastic scat-
tering. For this reason, measurements in our lab-
oratory are recorded only into about 0.8 A-1. On
the other hand, there is no particular difficulty in
following elastically scattered diffraction features
out to the largest angles to which interference
effects extend. By contrast, in X-ray diffraction
experiments inelastic scattering is negligible at
very small angles but begins to dominate at inter-
mediate to large angles.

Because of truncation of data at small angles,
together with problems arising from the form of
atomic scattering factors at small angles,® it is not
entirely straightforward to derive the pair corre-
lation functions of molecular liquids by Fourier
transformation of electron diffraction intensities.
The identical problem occurring in gas-phase
electron diffraction investigations of molecular
structure presents no obstacle to the derivation of
structures with considerable precision. Structures
are almost universally determined in refinements
of intensities, not radial distribution functions.
For the same reasons it is preferable to judge the
validity of a simulation of cluster structure by its
success in reproducing the diffracted intensity
profile.

The foregoing conclusions concerning resolv-
ing power can be derived from the theoretical
expression for the cluster structure function
sH,(s), which we shall need also for other pur-
poses. By definition:

sHy(s) = sIy(s)/I3(s) “)

where I ,(s) is the net interference intensity from
the intermolecular internuclear distances and
[(s) is the elastically scattered component of the
atomic intensity. The structure function can, in
turn, be written as the sum
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sHy(s) = >, > sHys) (5)

i<

over contributions from various types of atom
pairs (e.g., in benzene, C---C, C---H and H---H).
According to the usual (semi-kinematic) scatter-
ing theory adopted,® these components are given
by Eqn. (6), where the coefficients Cj are the

r(max)

sH(s) = Ciug(s) j 4mro,g,(r)sin srdr  (6)
0

constants Z,Z/%,Z; approximately representing
the effective electron scattering powers (nearly
proportional to products of atomic numbers),
while the functions

Z,Z5
zhlfklz

lf:' . [f,|COSA1'|,«,»
ZzZ

wi(s) = )

modify the C; to account for the exact form of the
electron scattering factors fiexp(in,). The mod-
ification functions pi(s) deviate only slightly from
unity except at small angles of scattering. Coeffi-
cients éii are the mean numbers of atom pairs i,j
per unit volume.

It can be seen from Eqn. (6) that the pair
correlation functions g;(r) could be derived from
a Fourier sine transform of the experimental
structure function if the coefficients w(s) were
truly constant (which they are, if all the atoms are
of the same kind). Even when the p,(s) are not
constant, Fourier transforms of the experimental
data can sometimes be helpful in evaluating the
performance of simulations of liquid structure.®

B. Available range of data from simulations. An
important inference that can be made from dif-
fracted intensities is the distance over which cor-
relations in molecular positions persist in liquids.
The larger the range, the sharper the initial in-
tensity maximum in the diffraction pattern. Un-
fortunately, it is impractical to try to simulate this
feature faithfully in Monte Carlo or molecular
dynamics simulations of supercooled liquids. This
is because such simulations are so demanding

*See, for example, Ref. 7.
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computationally that runs must be severely re-
stricted in sample size. For example, our Monte
Carlo computations on benzene molecules in-
corporating twelve interaction sites per molecule
are based on 128 molecules in a cubic region
LxLXxL, with periodic boundary conditions.
While this sample size is equivalent computation-
ally to one with more than 1500 Lennard-Jones
spheres, it cannot be relied upon to yield trust-
worthy pair correlation functions beyond L/2 or
so, or about 13 A. This is a substantially shorter
distance than that over which correlations are
observed to survive in cold clusters. Therefore,
any potentially sharp features in diffraction pat-
terns are badly washed out in simulations because
of the severe truncation characteristic of the
Monte Carlo calculations.

The magnitude of the washing out is easily
estimated. As shown in Eqn. (6), sH;/ui(s) is the
Fourier sine transform of rg,(r). Hence, what is
true about resolution in r-space when sH(s) is
truncated at s,,, must also be true in s-space
when g(r) is truncated at r,,,,. The limit of resolu-
tion of detail in the structure function sH(s) - or,
what amounts to the same thing, the blurring of
features in sH(s) — can be inferred from Eqn. (3)
to be

As = 4dlr,,.. (3b)

Since r,,, is of the order of 10-20 A in Monte
Carlo simulations, features as narrow as ~0.5
A-! will not be reproduced faithfully. Special
attention must be given to procedures to enable
definitive comparisons to be made between the-
ory and experiment.

A modest extension beyond L/2 has been re-
sorted to in an attempt to lessen slightly the trun-
cation problem. The rationalization is as follows.
For molecules in a cubic box with periodic
boundary conditions, site-to-site distances grea-
ter than L/2 in any direction perpendicular to a
box wall correspond to site-to-site distances less
than L/2 in the opposite direction. Correlations
beyond (or even close to) L/2 in these directions
must be spurious to a large degree in a non-
crystalline phase. Correlations along the dia-
gonals may be somewhat freer of effects of the
boundary conditions. Therefore, histograms
were accumulated beyond L/2 in directions point-
ing away from normals to the box walls. Details
are given in the Appendix.



C. Dealing with truncation problems. As we have
seen, truncations of experimental and theoretical
data are of such a nature as to interfere with a
direct comparison of experimental and theore-
tical results. The simplest way to handle the diffi-
culty is to transform both the theoretical and
experimental results until they correspond to the
same basis. Calculated pair correlation functions,
then, are transformed into calculated structure
functions sHy(s, D) for spherical clusters of dia-
meter D restricted to be only somewhat greater
than L/2. Next, experimental structure functions
are modified to correspond to structure functions
of smaller spherical clusters, also of diameter D,
characterized by the same internal cluster struc-
ture. Both steps in this strategy can be accom-
plished objectively, as follows.

D. Dependence of simulated structure function
on cluster diameter. First, consider the point-to-
point pair correlation function a(r,D) corre-
sponding to sites uniformly distributed in a
sphere of diameter D. This function is given by®

a(r,D)y=1 — 3(rD)2 + (¥D)2, r<D

=0, r>D. (8)
If it is assumed that the pair correlation function
gy(r,D) in a spherical cluster of diameter D
matches that of a bulk phase described by g;(r) as
closely as possible, then

gi;‘(” D) = (’-(":D)gi/(’)' 9

When this modified pair correlation function is
introduced into Eqn. (6) with 7, now equal to
D, the (numerically integrated) result, completed
via Eqn. (5), can be compared with the observed
structure function of a cluster after the modifica-
tion described in the next section.

E. Modification of observed structure function.
As in the previous section, the object is to trans-
form a structure function corresponding to a
large cluster [with pair correlation functions
g;(r)] to that of a small cluster [with pair correla-
tion functions g;(r,D), cf. Eqn. (9)]. To effectu-
ate this directly from the experimental structure
function when the functions g;(r) are unknown,
the Fourier folding theorem® can be invoked. Ac-
cording to this theorem, if sH(s) corresponds to
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gi(r) via Eqn. (6) for a cluster large compared
with D, then sH,(s,D) can be written as Eqn.

sH(s,D) = (2m)™"? f (10)

—

s"Hy(s")i(s—s")ds’

(10), where the modification function #(s) is the
Fourier cosine transform of a(r,D), or as given

H(s) = (2/m)"? f
0

= (2n) Y2 3D/w*){w? — 2w sin w + 2(1 — cos w)}

©

a(r, D)cos srdr

(11)

by Eqn. (11), where w is sD. Since #(s) is nearly
Gaussian in the upper 95 % of its profile, it in-
troduces little error to simplify to

t(s) = 3D(32m)"'? exp(—s*20?) (12)

with o, = 3.34/D and to reduce the limits of
integration in Eqn. (10) to *4g; or less.

A practical problem arises when applying the
above procedure to experimental data. The blur-
ring out of features in the intensity curve by
means of a numerical integration approximating
Eqn. (10) corresponds to superposing a series of
representations of the diffraction pattern dis-
placed from each other. Obviously, this intro-
duces errors in the vicinity of points at which
sHy(s) has been truncated. Intensities within
about 30, (about 0.5 A~! for benzene) of the
truncation point are appreciably distorted. This is
serious because the sharpest small angle feature
characteristically lies within about 0.5 A~! of the
low-angle cut-off of measurements. This source
of trouble can be handled quite reasonably, how-
ever. The loss of data can be mitigated by graft-
ing theoretical data inside the small-angle cut-off.
Since the small-angle intensities are much less
sensitive to structural detail than are intensities
further out (cf. section A, above), the theoretical
model need not be perfect to work reasonably
well. Intensities calculated from RISM simula-
tions’ can be (and have been) used. An even
simpler model may suffice, however, and it also
serves another useful role that will be discussed
later. This model is described in the next section.

Step function model

To a rough approximation, pair correlation func-
tions g;(r) are step functions, zero inside the dis-
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tances of closest atomic contact and unity, on
average, beyond this distance. Let us denote the
step function as gg(r), where

gin=0,0<r<r, (13a)
=L, rnsr<ow (13b)

and introduce the corresponding function

gj(r.D) = a(r, D)gj(r) (14)

for step-function clusters of diameter D. The as-
sociated function sHj(s, D) is, from Eqn. (6),

sHi(s) = Cj wi(s)(4mo;/s’) (B + 9, + B+ 9,) (15)

where, letting u =sD and v=sr,,

% = (3/u — 12/u3) cos u, (16)
¥, = —(12/u?) sin u, 17
t = (v — 3v¥2u + 3u + vud

— 6vu® + 12/u’) cos v, (18)
and

%= —(1 = 3v/u + 2’ - 12v/®) sinv.  (19)

The much simpler function sH(s) for bulk liquid
results in the limit of very large w.

Although it scarcely affects the small-angle be-
havior of sH°(s), it is worthwhile to present the
result of softening the harsh step function. If it is
assumed that the atomic contact is not distributed
about r, as a delta function but, rather, accord-
ing to
P(x) = (2rno?)™"? exp(—x*20?) (20)
where x=r,—-r, and r, is the variable contact
pertaining to soft atoms in thermal motion, it can
be shown that the smoothed pair correlation
function is

8i(r) = lerf(Z))2 21)

where Z is (r—r,)/(20?)"2. The effect of this
smoothing upon the structure functions is giv-
en by
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sHi(s,D) = sH)(s, D) exp(—o%%2) (22)
where it is to be understood that r, and o, each
depend upon the atom pair i,j and the temper-
ature involved. One way to estimate plausible
values of r, and o, for comparison with Monte
Carlo simulations is to identify r, with the value
of r at which g(r) first becomes 0.5, and to de-

duce o, from the slope of g(r) at r, via

[dg;(r)drl,, = {dlerf(Z)y2dr],

= (2no?)~'2, (23)
A comparison of structure functions for benzene
at 160 K derived from a Monte Carlo simulation’
and from eqns. 15-23 with D = 18 A is shown in
Fig. 1. It is evident that the gross features of
sHy(s) {or sM,(s)] are governed by the step func-
tions gi(s) but that the shapes of the features are
strongly influenced by details of the molecular
interactions.

Apportionment of diffracted intensities

To a good approximation (the independent atom
model) the total intensity of electrons diffracted
by clusters can be written as the sum
Lo = 1:: + I::el + Lo + Iy + Icg (24)
where the first two components are the elastic
and electronically inelastic contributions scat-
tered by the atoms, I, represents the intramo-
lecular interference terms and I, the “cluster”
intermolecular interference terms associated with
internuclear distances between different mole-
cules in the cluster. The last contribution, L,
refers to intensity scattered by the carrier gas. In
the following discussion we shall assume that I,
has already been subtracted as described else-
where.!! Because of the (Rutherford) mechanism
of electron scattering, I,,(s) is an extremely rap-
idly falling function of s but one that is readily
amenable to visual inspection or numerical analy-
sis if “leveled” by division by the theoretical
atomic scattering to obtain I*'(s), or

I5*8) = Lo/ U5t + LiYuneor (25)

where the atomic intensity is that of the clusters,
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Fig. 1. Structure function sM,(s) for 18 A benzene clusters at 160 K. Solid curve: Monte Carlo calculation with
potential function of Ref. 10. Dashed curve: step-function model.

the contribution by carrier atoms being purpose-
fully left out.

A difficulty with this procedure in ordinary
molecular structure analyses that is compounded
in cluster studies, is that systematic errors in ex-
periment and (even more) in theory make it inad-
equate merely to level the intensities with the
theoretical atomic intensity I. Even though
large-angle electron scattering is dominated by
nuclear scattering, in the small-angle range of
interest in cluster research, electron diffraction
intensities are far more sensitive to electron cor-
relation and redistribution of charge in covalent
bonding than are X-ray intensities. Therefore, to
compensate for systematic errors, a suitable re-
duced intensity denoted M(s) is found by passing
a smooth polynomial background B(s) through
the theoretically leveled intensities, and by divi-
sion, once more, by this smooth background to
obtain M(s). In standard molecular structure re-
finements (where I, and I, are zero), then
R - My(s) = [Io(s)/B(s)] — 1 (26)
where R, the “index of resolution”, is an empir-
ical constant close to unity, introduced to com-
pensate for systematic experimental and theore-
tical errors. The objective criterion for establish-

ing R and the polynomial coefficients of B(s) is to
refine them simultaneously with the molecular
structure parameters, entering i, (s) until the
difference between calculated and experimental
M(s) functions is minimized. Experience demon-
strates that this procedure leads to excellent re-
sults.

An analogous procedure for liquid clusters
would require a coupling of potential parameters
in Monte Carlo refinements with background
coefficients in diffraction experiments — an im-
practicable approach. In early cluster studies,
reasonably good backgrounds were established
by entering the known molecular structure pa-
rameters into I, of Eqn. (24) and passing a
smooth polynomial background through} /I
in such a way as to minimize residuals, ignoring
any effect of I,. This procedure led to quite good
structure functions I/, in the intermediate to
large angle scattering. It was not entirely satis-
factory in the small angle region, where theoret-
ical uncertainties are most severe and where
there was no objective criterion to establish the
background. Fortunately, this region is the re-
gion of least sensitivity to cluster structure, as
explained in previous sections. Therefore, the
step-function representation of the preceding sec-
tion establishes the main features of 1, except for
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a high frequency ripple that is important in struc-
ture inferences but relatively harmless in con-
structing the smooth background B. Accordingly,
theoretical expressions are available for the re-
duced functions M'" (s) and M%(s), so that from
Eqn. (6) can be written

IYYB — R - M™

mol

- Mg

= [(Iq + BEYLVB. 27

The result of these subtractions is a fairly smooth
“atomic curve” that is to be cleaved by the
smooth background function B in such a way as
to leave minimum residuals. Once B is estab-
lished by least-squares, the reduced intensity is
given by

M(s) = (Iy/B) = R-Myy(s) — 1. (28)
In the most careful work, M,(s) is obtained
experimentally from the unclustered molecules to
correct for the (usually very small) systematic
errors in M (s).1? Finally, it is advantageous to
convert to the cluster structure function of more
universal interest

SHy(s) = sMy(s) X (I + IBY™(IH™  (29)
with the aid of the theoretical atomic intensities.
Here, systematic errors in theoretical atomic in-
tensities have a much smaller effect than in estab-
lishing the original atomic background intensity.

Concluding remarks

Now that electron diffraction experiments on
cold liquid clusters are beginning to generate data
of high quality, it is important to analyze the
results carefully to extract realistic information
about molecular interactions and assess the val-
idity of conventional treatments of molecular lig-
uids. Because of fundamental limitations in cur-
rent experimental and theoretical techniques,
there are problems in comparing experiment and
theory directly on the same basis. The most im-
portant difficulties have been analyzed in the
foregoing sections, and procedures to overcome
them have been developed. In the next paper of
this series'” these procedures will be implemented
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in a comparison of results of experimental and
Monte Carlo studies of benzene.
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Appendix

Computation of pair correlation functions. In a
Monte Carlo run with N, molecules in a box
LXxLXL, the coordinates of all interaction sites
are saved periodically, for a total of N, saved
outputs. A sub-routine uses the site coordinates
to construct the atomic coordinates (which may
differ from the interaction site coordinates) for
the purpose of calculating the pair correlation
functions g;(r) and electron scattered intensities.
Each molecule has »; atoms of kind i and n; atoms
of kind j (i and j may be the same kind). All
intermolecular internuclear distances r; in the
sample of N, molecules are calculated starting
with reference atom i and locating for each atom j
not in the reference molecule the “nearest im-
age” of atom j (which may be in an adjacent box
if i is not close to the box center). Histograms of
each pair type (e.g. CC, CH, HH in a hydrocar-
bon) are accumulated, with Nj; (r,) outcomes ac-
cepted from r, — Ar/2 to r, + Ar/2. If r, is less
than L/2, no part of the surface of a sphere of
radius r, centered on atom i lies outside the re-
gion of sampled atoms j. For L2 < r, < L/2"?,
the sampled atoms j populate, on average, only
the fraction (3L/2r,) — 2 of the surface of the
sphere of radius rk. No sampled atoms lie beyond
3"2L/2, and those lying beyond L/2 tend to be
concentrated along directions parallel to the box
diagonals.

The average number of atoms j, namely dN;,
lying at a distance from reference atom i between
r and r+dr, is by definition 4nr o; g(r)dr,
where g, is the mean density n,N,/L’. From the
accumulated histograms N,(r;), then, the pair
correlation function g;(r,) can be calculated, in-
cluding all atoms #; in the reference molecule and
all N, molecules, from
8in) = Nij(rk)Lgl(znr sz”ianmstA’ ) (A1)
for r, < L/2, where K is unity if i and j are of the
same kind, or 2 otherwise. As mentioned in the



text, spurious correlations are not quite as severe
along diagonals of the box as along directions
perpendicular to the box faces. Therefore, it is
plausible to extend the calculation of g;(r) some-
what beyond L/2 by inserting the corresponding
histograms N(r,) into the expression (A1) and
dividing by the fraction (3L/2r,) — 2 noted ear-
lier, to normalize in the region L/2 < r, < L{2'2,
Pair correlation functions so calculated in this
extended region have so far looked reasonable.
Inasmuch as the only use made of them is in the
calculation of ;(r, D) curves for small clusters and
the corresponding intensities [cf. eqns. (9) and
(10) with D < L/2"*, in which the weighting
function a(r,D) of eqn. (8) assigns very low
weights to the region L2 < r < L/2"2, there
seems to be some adantage and little risk in ex-
tending data into this equivocal region of r.
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